Sharp Interface Limit for Invariant Measures of a Stochastic Allen-cahn Equation
نویسنده
چکیده
The invariant measure of a one-dimensional Allen-Cahn equation with an additive space-time white noise is studied. This measure is absolutely continuous with respect to a Brownian bridge with a density which can be interpreted as a potential energy term. We consider the sharp interface limit in this setup. In the right scaling this corresponds to a Gibbs type measure on a growing interval with decreasing temperature. Our main result is that in the limit we still see exponential convergence towards a curve of minimizers of the energy if the interval does not grow too fast. In the original scaling the measures is concentrate on configurations with precisely one jump.
منابع مشابه
Sharp-Interface Limit of the Allen-Cahn Action Functional in One Space Dimension
We analyze the sharp-interface limit of the action minimization problem for the stochastically perturbed Allen-Cahn equation in one space dimension. The action is a deterministic functional which is linked to the behavior of the stochastic process in the small noise limit. Previously, heuristic arguments and numerical results have suggested that the limiting action should “count” two competing ...
متن کاملFinite Element Methods for the Stochastic Allen-Cahn Equation with Gradient-type Multiplicative Noise
This paper studies finite element approximations of the stochastic Allen–Cahn equation with gradient-type multiplicative noise that is white in time and correlated in space. The sharp interface limit—as the diffuse interface thickness vanishes—of the stochastic Allen–Cahn equation is formally a stochastic mean curvature flow which is described by a stochastically perturbed geometric law of the ...
متن کاملTightness for a Stochastic Allen–cahn Equation
We study an Allen–Cahn equation perturbed by a multiplicative stochastic noise that is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive a uniform bound for the diffuse surface area, prove the tightness of solutions in the sharp interface limit, and show the convergence to phase-indicator functions.
متن کاملOn the short time asymptotic of the stochastic Allen-Cahn equation
A description of the short time behavior of solutions of the Allen-Cahn equation with a smoothened additive noise is presented. The key result is that in the sharp interface limit solutions move according to motion by mean curvature with an additional stochastic forcing. This extends a similar result of Funaki [9] in spatial dimension n = 2 to arbitrary dimensions. Resumé On étudie le comportem...
متن کاملThe Allen-cahn Action Functional in Higher Dimensions
Abstract. The Allen–Cahn action functional is related to the probability of rare events in the stochastically perturbed Allen–Cahn equation. Formal calculations suggest a reduced action functional in the sharp interface limit. We prove in two and three space dimensions the corresponding lower bound. One difficulty is that diffuse interfaces may collapse in the limit. We therefore consider the l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009